Merchandise Description
TaiBang Motor Market Group Co., Ltd.
The principal products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV large gear motors, Planetary gear motor ,Worm gear motor etc, which employed extensively in a variety of fields of producing pipelining, transportation, foods, drugs, printing, cloth, packing, business office, apparatus, leisure and so forth, and is the preferred and matched product for automatic device.
Design Instruction
GB090tenP2
GB  090  571  P2 
Reducer Collection Code  Exterior Diameter  Reduction Ratio  Reducer Backlash 
GB:Large Precision Sq. Flange Output
GBR:High Precision Right Angle Sq. Flange Output GE:High Precision Spherical Flange Output GER:Large Precision Right Round Flange Output 
050:ø50mm 070:ø70mm 090:ø90mm 120:ø120mm a hundred and fifty five:ø155mm 205:ø205mm 235:ø235mm 042:42x42mm 060:60x60mm 090:90x90mm one hundred fifteen:115x115mm 142:142x142mm 180:180x180mm 220:220x220mm 
571 implies 1:10  P0:Higher Precision Backlash
P1:Precision Backlash P2:Common Backlash 
Major Technological Efficiency
Product  Quantity of phase  Reduction Ratio  GB042  GB060  GB060A  GB090  GB090A  GB115  GB142  GB180  GB220 
Rotary Inertia  1  three  .03  .sixteen  .sixty one  three.25  nine.21  28.ninety eight  69.sixty one  
4  .03  .fourteen  .forty eight  2.74  seven.54  23.sixty seven  54.37  
5  .03  .13  .forty seven  two.71  7.forty two  23.29  53.27  
six  .03  .13  .45  2.sixty five  7.twenty five  22.75  fifty one.72  
seven  .03  .thirteen  .forty five  two.sixty two  7.14  22.forty eight  50.ninety seven  
8  .03  .thirteen  .forty four  two.58  seven.07  22.fifty nine  fifty.eighty four  
9  .03  .thirteen  .44  two.fifty seven  seven.04  22.53  fifty.63  
10  .03  .thirteen  .44  two.fifty seven  7.03  22.fifty one  50.fifty six  
2  15  .03  .03  .thirteen  .thirteen  .47  .forty seven  two.seventy one  7.42  23.29  
20  .03  .03  .13  .thirteen  .47  .47  2.71  seven.42  23.29  
25  .03  .03  .13  .thirteen  .forty seven  .47  two.71  seven.42  23.29  
thirty  .03  .03  .thirteen  .13  .47  .47  2.71  seven.forty two  23.29  
35  .03  .03  .thirteen  .thirteen  .47  .47  2.71  seven.forty two  23.29  
40  .03  .03  .13  .thirteen  .forty seven  .47  2.seventy one  7.42  23.29  
45  .03  .03  .13  .thirteen  .forty seven  .forty seven  2.seventy one  seven.42  23.29  
50  .03  .03  .13  .thirteen  .44  .44  2.57  seven.03  22.fifty one  
sixty  .03  .03  .thirteen  .13  .forty four  .forty four  2.57  7.03  22.51  
70  .03  .03  .thirteen  .thirteen  .44  .44  2.57  7.03  22.fifty one  
80  .03  .03  .thirteen  .13  .forty four  .44  two.fifty seven  7.03  22.51  
ninety  .03  .03  .13  .13  .44  .44  2.57  7.03  22.fifty one  
one hundred  .03  .03  .13  .thirteen  .forty four  .44  two.fifty seven  seven.03  22.51 
Item  Variety of stage  GB042  GB060  GB060A  GB90  GB090A  GB115  GB142  GB180  GB220  
Backlash(arcmin)  High Precision P0  1  ≤1  ≤1  ≤1  ≤1  ≤1  ≤1  
two  ≤3  ≤3  ≤3  ≤3  
Precision P1  1  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  
2  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
Standard P2  1  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
two  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  
Torsional Rigidity(N.M/arcmin)  one  three  seven  7  14  fourteen  25  fifty  one hundred forty five  225  
two  3  7  7  14  fourteen  twenty five  50  a hundred forty five  225  
Noise(dB)  one,two  ≤56  ≤58  ≤58  ≤60  ≤60  ≤63  ≤65  ≤67  ≤70  
Rated input speed(rpm)  one,two  5000  5000  5000  4000  4000  4000  3000  3000  2000  
Max enter pace(rpm)  one,two  10000  10000  10000  8000  8000  8000  6000  6000  4000 
Noise check regular:Length 1m,no load.Calculated with an enter pace 3000rpm
US $50 / Piece  
1 Piece (Min. Order) 
###
Application:  Machinery, Agricultural Machinery 

Function:  Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction 
Layout:  Cycloidal 
Hardness:  Hardened Tooth Surface 
Installation:  Vertical Type 
Step:  DoubleStep 
###
Samples: 
US$ 50/Piece
1 Piece(Min.Order) 

###
Customization: 
Available


###
GB  090  010  P2 
Reducer Series Code  External Diameter  Reduction Ratio  Reducer Backlash 
GB:High Precision Square Flange Output
GBR:High Precision Right Angle Square Flange Output GE:High Precision Round Flange Output GER:High Precision Right Round Flange Output 
050:ø50mm 070:ø70mm 090:ø90mm 120:ø120mm 155:ø155mm 205:ø205mm 235:ø235mm 042:42x42mm 060:60x60mm 090:90x90mm 115:115x115mm 142:142x142mm 180:180x180mm 220:220x220mm 
010 means 1:10  P0:High Precision Backlash
P1:Precision Backlash P2:Standard Backlash 
###
Item  Number of stage  Reduction Ratio  GB042  GB060  GB060A  GB090  GB090A  GB115  GB142  GB180  GB220 
Rotary Inertia  1  3  0.03  0.16  0.61  3.25  9.21  28.98  69.61  
4  0.03  0.14  0.48  2.74  7.54  23.67  54.37  
5  0.03  0.13  0.47  2.71  7.42  23.29  53.27  
6  0.03  0.13  0.45  2.65  7.25  22.75  51.72  
7  0.03  0.13  0.45  2.62  7.14  22.48  50.97  
8  0.03  0.13  0.44  2.58  7.07  22.59  50.84  
9  0.03  0.13  0.44  2.57  7.04  22.53  50.63  
10  0.03  0.13  0.44  2.57  7.03  22.51  50.56  
2  15  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
20  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
25  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
30  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
35  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
40  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
45  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
50  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
60  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
70  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
80  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
90  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
100  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51 
###
Item  Number of stage  GB042  GB060  GB060A  GB90  GB090A  GB115  GB142  GB180  GB220  
Backlash(arcmin)  High Precision P0  1  ≤1  ≤1  ≤1  ≤1  ≤1  ≤1  
2  ≤3  ≤3  ≤3  ≤3  
Precision P1  1  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  
2  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
Standard P2  1  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
2  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  
Torsional Rigidity(N.M/arcmin)  1  3  7  7  14  14  25  50  145  225  
2  3  7  7  14  14  25  50  145  225  
Noise(dB)  1,2  ≤56  ≤58  ≤58  ≤60  ≤60  ≤63  ≤65  ≤67  ≤70  
Rated input speed(rpm)  1,2  5000  5000  5000  4000  4000  4000  3000  3000  2000  
Max input speed(rpm)  1,2  10000  10000  10000  8000  8000  8000  6000  6000  4000 
US $50 / Piece  
1 Piece (Min. Order) 
###
Application:  Machinery, Agricultural Machinery 

Function:  Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction 
Layout:  Cycloidal 
Hardness:  Hardened Tooth Surface 
Installation:  Vertical Type 
Step:  DoubleStep 
###
Samples: 
US$ 50/Piece
1 Piece(Min.Order) 

###
Customization: 
Available


###
GB  090  010  P2 
Reducer Series Code  External Diameter  Reduction Ratio  Reducer Backlash 
GB:High Precision Square Flange Output
GBR:High Precision Right Angle Square Flange Output GE:High Precision Round Flange Output GER:High Precision Right Round Flange Output 
050:ø50mm 070:ø70mm 090:ø90mm 120:ø120mm 155:ø155mm 205:ø205mm 235:ø235mm 042:42x42mm 060:60x60mm 090:90x90mm 115:115x115mm 142:142x142mm 180:180x180mm 220:220x220mm 
010 means 1:10  P0:High Precision Backlash
P1:Precision Backlash P2:Standard Backlash 
###
Item  Number of stage  Reduction Ratio  GB042  GB060  GB060A  GB090  GB090A  GB115  GB142  GB180  GB220 
Rotary Inertia  1  3  0.03  0.16  0.61  3.25  9.21  28.98  69.61  
4  0.03  0.14  0.48  2.74  7.54  23.67  54.37  
5  0.03  0.13  0.47  2.71  7.42  23.29  53.27  
6  0.03  0.13  0.45  2.65  7.25  22.75  51.72  
7  0.03  0.13  0.45  2.62  7.14  22.48  50.97  
8  0.03  0.13  0.44  2.58  7.07  22.59  50.84  
9  0.03  0.13  0.44  2.57  7.04  22.53  50.63  
10  0.03  0.13  0.44  2.57  7.03  22.51  50.56  
2  15  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
20  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
25  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
30  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
35  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
40  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
45  0.03  0.03  0.13  0.13  0.47  0.47  2.71  7.42  23.29  
50  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
60  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
70  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
80  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
90  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51  
100  0.03  0.03  0.13  0.13  0.44  0.44  2.57  7.03  22.51 
###
Item  Number of stage  GB042  GB060  GB060A  GB90  GB090A  GB115  GB142  GB180  GB220  
Backlash(arcmin)  High Precision P0  1  ≤1  ≤1  ≤1  ≤1  ≤1  ≤1  
2  ≤3  ≤3  ≤3  ≤3  
Precision P1  1  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  ≤3  
2  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
Standard P2  1  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  ≤5  
2  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  ≤7  
Torsional Rigidity(N.M/arcmin)  1  3  7  7  14  14  25  50  145  225  
2  3  7  7  14  14  25  50  145  225  
Noise(dB)  1,2  ≤56  ≤58  ≤58  ≤60  ≤60  ≤63  ≤65  ≤67  ≤70  
Rated input speed(rpm)  1,2  5000  5000  5000  4000  4000  4000  3000  3000  2000  
Max input speed(rpm)  1,2  10000  10000  10000  8000  8000  8000  6000  6000  4000 
The Cyclonoidal Gearbox
Basically, the cycloidal gearbox is a gearbox that uses a cycloidal motion to perform its rotational movement. It is a very simple and efficient design that can be used in a variety of applications. A cycloidal gearbox is often used in applications that require the movement of heavy loads. It has several advantages over the planetary gearbox, including its ability to be able to handle higher loads and higher speeds.
Dynamic and inertial effects of a cycloidal gearbox
Several studies have been conducted on the dynamic and inertial effects of a cycloidal gearbox. Some of them focus on operating principles, while others focus on the mathematical model of the gearbox. This paper examines the mathematical model of a cycloidal gearbox, and compares its performance with the realworld measurements. It is important to have a proper mathematical model to design and control a cycloidal gearbox. A cycloidal gearbox is a twostage gearbox with a cycloid disc and a ring gear that revolves around its own axis.
The mathematical model is made up of more than 1.6 million elements. Each gear pair is represented by a reduced model with 500 eigenmodes. The eigenfrequency for the spur gear is 70 kHz. The modally reduced model is a good fit for the cycloidal gearbox.
The mathematical model is validated using ABAQUS software. A cycloid disc was discretized to produce a very fine model. It requires 400 element points per tooth. It was also verified using static FEA. This model was then used to model the stiction of the gears in all quadrants. This is a new approach to modelling stiction in a cycloidal gearbox. It has been shown to produce results comparable to those of the EMBS model. The results are also matched by the elastic multibody simulation model. This is a good fit for the contact forces and magnitude of the cycloid gear disc. It was also found that the transmission accuracy between the cycloid gear disc and the ring gear is about 98.5%. However, this value is lower than the transmission accuracy of the ring gear pair. The transmission error of the corrected model is about 0.3%. The transmission accuracy is less because of the lower amount of elastic deformation on the tooth flanks.
It is important to note that the most accurate contact forces for each tooth of a cycloid gearbox are not smooth. The contact force on a single tooth starts with a linear rise and then ends with a sharp drop. It is not as smooth as the contact force on a point contact, which is why it has been compared to the contact force on an ellipse contact. However, the contact on an ellipse contact is still relatively small, and the EMBS model is not able to capture this.
The FE model for the cycloid disc is about 1.6 million elements. The most important part of the FE model is the discretization of the cycloid disc. It is very important to do the discretization of the cycloid gear disc very carefully because of the high degree of vibration that it experiences. The cycloid disc has to be discretized finely so that the results are comparable to those of a static FEA. It has to be the most accurate model possible in order to be able to accurately simulate the contact forces between the cycloid disc and the ring gear.
Kinematics of a cycloidal drive
Using an arbitrary coordinate system, we can observe the motion of components in a cycloidal gearbox. We observe that the cycloidal disc rotates around fixed pins in a circle, while the follower shaft rotates around the eccentric cam. In addition, we see that the input shaft is mounted eccentrically to the rollingelement bearing.
We also observe that the cycloidal disc rotates independently around the eccentric bearing, while the follower shaft rotates around an axis of symmetry. We can conclude that the cycloidal disc plays a pivotal role in the kinematics of a cycloidal gearbox.
To calculate the efficiency of the cycloidal reducer, we use a model that is based on the nonlinear stiffness of the contacts. In this model, the nonlinearity of the contact is governed by the nonlinearity of the force and the deformation in the contact. We have shown that the efficiency of the cycloidal reducer increases as the load increases. In addition, the efficiency is dependent on the sliding velocity and the deformations of the normal load. These factors are considered as the key variables to determine the efficiency of the cycloidal drive.
We also consider the efficiency of the cycloidal reducer with the input torque and the input speed. We can calculate the efficiency by dividing the net torque in the ring gear by the output torque. The efficiency can be adjusted to suit different operating conditions. The efficiency of the cycloidal drive is increased as the load increases.
The cycloidal gearbox is a multistage gearbox with a small shaft oin and a big shaft. It has 19 teeth and brass washers. The outer discs move in opposition to the middle disc, and are offset by 180 deg. The middle disc is twice as massive as the outer disc. The cycloidal disc has nine lobes that move by one lobe per drive shaft revolution. The number of pins in the disc should be smaller than the number of pins in the surrounding pins.
The input shaft drives an eccentric bearing that is able to transmit the power to the output shaft. In addition, the input shaft applies forces to the cycloidal disk through the intermediate bearing. The cycloidal disk then advances in 360 deg/pivot/roller steps. The output shaft pins then move around in the holes to make the output shaft rotate continuously. The input shaft applies a sinusoidal motion to maintain the constant speed of the base shaft. This sine wave causes small adjustments to the follower shaft. The forces applied to the internal sleeves are a part of the equilibrium mechanism.
In addition, we can observe that the cycloidal drive is capable of transmitting a greater torque than the planetary gear. This is due to the cycloidal gear’s larger axial length and the ring gear’s smaller hole diameter. It is also possible to achieve a positive fit between the fixed ring and the disc, which is achieved by toothing between the fixed ring and the disc. The cycloidal disk is usually designed with a short cycloid to minimize unbalance forces at high speeds.
Comparison with planetary gearboxes
Compared to planetary gearboxes, the cycloidal gearbox has some advantages. These advantages include: low backlash, better overload capacity, a compact design, and the ability to perform in a wide range of applications. The cycloidal gearbox has become popular in the multiaxis robotics market. The gearbox is also increasingly used in first joints and positioners.
A cycloidal gearbox is a gearbox that consists of four basic components: a cycloid disk, an output flange, a ring gear, and a fixed ring. The cycloid disk is driven by an eccentric shaft, which advances in a 360deg/pivot/roller step. The output flange is a fixed pin disc that transmits the power to the output shaft. The ring gear is a fixed ring, and the input shaft is connected to a servomotor.
The cycloidal gearbox is designed to control inertia in highly dynamic situations. These gearboxes are generally used in robotics and positioners, where they are used to position heavy loads. They are also commonly used in a wide range of industrial applications. They have higher torque density and a low backlash, making them ideal for heavy loads.
The output flange is also designed to handle a torque of up to 500 Nm. Its rotational speed is lower than the planet gearbox, but its output torque is much higher. It is designed to be a highperformance gearbox, and it can be used in applications that need high ratios and a high level of torque density. The cycloid gearbox is also less expensive and has less backlash. However, the cycloidal gearbox has disadvantages that should be considered when designing a gearbox. The main problem is vibrations.
Compared to planetary gearboxes, cycloidal gearboxes have a smaller overall size and are less expensive. In addition, the cycloid gearbox has a large reduction ratio in one stage. In general, cycloidal gearboxes have single or two stages, with the third stage being less common. However, the cycloid gearbox is not the only type of gearbox that has this type of configuration. It is also common to find a planetary gearbox with a single stage.
There are several different types of cycloidal gearboxes, and they are often referred to as cycloidal speed reducers. These gearboxes are designed for any industry that uses servos. They are shorter than planetary gearboxes, and they are larger in diameter for the same torque. Some of them are also available with a ratio lower than 30:1.
The cycloid gearbox can be a good choice for applications where there are high rotational speeds and high torque requirements. These gearboxes are also more compact than planetary gearboxes, and are suitable for hightorque applications. In addition, they are more robust and can handle shock loads. They also have low backlash, and a higher level of accuracy and positioning accuracy. They are also used in a wide range of applications, including industrial robotics.
editor by czh 20221221