Product Description
MB-XW step-less variable speed cycloidal reducer is a continuously variable speed reducer composed of step-less speed change plus a one-level cycloidal pinwheel reducer. The 4- pole motor outputs 200-1000rpm through MB step-less speed change and then passes through the cycloidal pinwheel to realize gear reduction (reduction ratio 17 output speed at 58 ~ 11.5rpm , 23 is the output rotation speed 42 is ~ 8.5 RPM ), as MB75YB-7.5XW6-17 CVT cycloidal reducer, model significance described below.
Our MB-XW step-less cycloid speed reducer gearboxes are suitable for the following Electric motors, which are mainly used as power supply of the coal feeders ( Material Transferring Feeders)
Electric motor Modesl | Power kW |
Output speed r/min |
Suited for the following coal feeders | A0 mm |
B0 mm |
d mm |
L mm |
b mm |
d0 mm |
MB55YB-5.5XW6-23 | 5.5 | 42~8.5 | GLD800 | 275 | 380 | 65 | 89 | 18 | 22 |
MB75YB-7.5XW6-17 | 7.5 | 58~11.5 | GLD1500 , GLD2200 , GLL500 , GLL800 | ||||||
MB110YB-11XW8-17 | 11 | 58~11.5 | GLD3300 | 380 | 480 | 90 | 120 | 25 | 22 |
MB150YB-15XW8-17 | 15 | 58~11.5 | GLD4000 , GLD4400 | 380 | 480 | 90 | 120 | 25 | 22 |
Application: | Motor |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Gear Shape: | Cylindrical Gear |
Step: | Stepless |
Type: | Gear Reducer |
Samples: |
US$ 3000/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Calculation of Reduction Ratio in a Cycloidal Gearbox
The reduction ratio in a cycloidal gearbox can be calculated using the following formula:
Reduction Ratio = (Number of Input Pins + Number of Output Pins) / Number of Output Pins
In a cycloidal gearbox, the input pins engage with the lobes of the cam disc, while the output pins are engaged with the cycloidal pins of the output rotor. The reduction ratio determines the relationship between the number of input and output pins engaged at any given time.
For example, if a cycloidal gearbox has 7 input pins and 14 output pins engaged, the reduction ratio would be:
Reduction Ratio = (7 + 14) / 14 = 1.5
This means that for every 1 revolution of the input pins, the output rotor will complete 1.5 revolutions. The reduction ratio is a key parameter that influences the output speed and torque of the cycloidal gearbox.
Noise and Vibration Considerations in Cycloidal Gearboxes
Cycloidal gearboxes are generally known for their smooth and quiet operation. However, like any mechanical system, they can still exhibit some level of noise and vibration. Here are the key factors to consider:
- Gear Design: The unique rolling contact design of cycloidal gears contributes to their relatively low noise levels. The teeth engagement is gradual and continuous, reducing impact forces and noise.
- Lubrication: Proper lubrication is essential to minimize friction and noise. Using high-quality lubricants and maintaining proper lubrication levels can help reduce noise and vibration in cycloidal gearboxes.
- Precision Manufacturing: Precise manufacturing processes and tight tolerances can help minimize irregularities in gear meshing, which can contribute to noise and vibration.
- Load Distribution: Proper load distribution among multiple lobes in the cycloidal mechanism can help prevent localized stress concentrations that could lead to vibrations and noise.
- Bearing Quality: High-quality bearings can contribute to smooth operation and reduce vibrations that could be transmitted to the gearbox housing.
- Mounting and Installation: Proper mounting and alignment of the gearbox are important to ensure that it operates smoothly and without excessive vibrations.
While cycloidal gearboxes are designed to minimize noise and vibration, it’s important to consider the specific application, environmental conditions, and operating parameters. Regular maintenance, proper lubrication, and selecting the appropriate gearbox size and type can all contribute to reducing noise and vibration levels in cycloidal gearboxes.
What is a Cycloidal Gearbox?
A cycloidal gearbox, also known as a cycloidal drive, is a type of gearing mechanism that utilizes the principle of cycloidal motion for power transmission. It consists of several components, including a high-speed input shaft, a set of cycloidal pins or rollers, and an outer stationary ring with lobed profiles.
The operation of a cycloidal gearbox involves a unique mechanism:
- Input Shaft: The high-speed input shaft is connected to the driving source, such as an electric motor. It transfers rotational motion to the cycloidal pins.
- Cycloidal Pins or Rollers: These pins or rollers are typically arranged around the input shaft in a circular pattern. As the input shaft rotates, the cycloidal pins also rotate, causing them to engage with the lobes on the outer stationary ring.
- Outer Stationary Ring: The outer ring has lobed profiles, and it remains stationary during operation. The lobes of the outer ring interact with the cycloidal pins or rollers, causing them to move in a unique motion known as epicycloidal or hypocycloidal motion.
The interaction between the cycloidal pins and the lobed profiles of the outer ring results in smooth and controlled motion transmission. The mechanism provides advantages such as high torque capacity, compact size, and precise positioning capabilities.
Cycloidal gearboxes are widely used in various applications, including robotics, automation, packaging machinery, and other industrial systems where high torque, precision, and compact design are essential.
editor by CX 2023-10-12