China Standard High Torque CZPT Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer planetary gearbox

Product Description

XWD2/ XWD3/XWD4/XWD5/XWD6/XWD7 /XWD8 gearbox with ac motor 

Cycloidal reducer adopts meshing cycloid pin gear, planetary transmission principle, so usually also called planetary cycloid reducer.  Planetary cycloidal reducer can be widely used in petroleum, environmental protection, chemical, cement, transport, textile, pharmaceutical, food, printing, lifting, mining, metallurgy, construction, power generation and other industries.
      As a drive or reduction gear,  the machine is divided into horizontal, vertical, biaxial and straight league assembly way,etc.  Its unique stable structure can replace ordinary cylindrical gear reducer and worm gear reducer in many cases. Therefore, planetary cycloid gear reducer is widely used in various industries and fields, and is generally welcomed by the majority of users.

XWD/BWY cycloid  reducer motor details:

B series:

BW basedoard horizontal installed double axes type 

BL flange vertical installed double axes type

BWY  basedoard horizontal installed motor direct-connection type

BLY   flange vertical installed motor direct-connection type

X series:

XW basedoard horizontal installed double axes type

XL flange vertical installed double axes type

XWD basedoard horizontal installed motor direct-connection type

XLD flange vertical installed motor direct-connection type

 

 

FAQ
1, Q:what\’s your MOQ for ac gearbox motor  ?
A: 1pc is ok for each type electric gear box  motor 

2, Q: What about your warranty for your induction speed reducer motor ?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of speed reduction motor  ?
A: plywood case ,if size is small  ,we will pack with pallet for less 1 container 

6, Q: What information should be given, if I buy electric helical geared motor  from you ?
A: rated power,  ratio or output speed,type ,voltage , mounting way , quantity , if more is better , 
 

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Customization:
Available

|

Customized Request

cycloidal gearbox

Efficiency of Cycloidal Gearboxes in Power Transmission

Cycloidal gearboxes offer relatively high power transmission efficiency compared to other types of gearboxes. The efficiency of a cycloidal gearbox depends on various factors, including the design, quality of components, lubrication, and load conditions.

Typically, the power transmission efficiency of a cycloidal gearbox ranges from 85% to 95%. However, this can vary based on several factors:

  • Number of Reduction Stages: Multi-stage cycloidal gearboxes may experience slightly lower efficiency due to multiple gear meshing interactions.
  • Quality and Design: Well-designed and precision-manufactured cycloidal gearboxes tend to exhibit higher efficiency.
  • Lubrication: Proper lubrication is crucial for reducing friction and enhancing efficiency. Insufficient or deteriorated lubrication can lead to efficiency losses.
  • Load Conditions: Higher loads and torque levels can lead to higher friction and lower efficiency. Properly matching the gearbox to the application is essential.

Despite minor efficiency losses compared to some other gearbox types, the benefits of compactness, high torque density, and precise motion control often outweigh the efficiency considerations in many applications.

cycloidal gearbox

History of Cycloidal Gear System Development

The history of cycloidal gear systems dates back to ancient times, with various forms of non-circular gears being used for specialized applications. The concept of the cycloidal gear system as we know it today, however, has evolved over centuries of engineering and innovation:

  • Ancient Roots: The concept of using non-circular gears can be traced back to ancient civilizations, where devices like the “Antikythera Mechanism” (c. 150-100 BC) employed non-circular gear arrangements.
  • Cam Mechanisms: During the Renaissance, engineers and inventors like Leonardo da Vinci explored mechanisms involving cams and followers, which are precursors to modern cycloidal gears.
  • Cycloidal Motion Studies: In the 19th century, engineers and mathematicians like Franz Reuleaux and Robert Willis studied and developed mechanisms based on the principles of cycloidal motion.
  • Early Cycloidal Gearboxes: The development of cycloidal gear systems gained momentum in the late 19th and early 20th centuries, with inventors like Emile Alluard and Louis André creating early forms of cycloidal gear mechanisms and gearboxes.
  • Cycloidal Drive: The term “cycloidal drive” was coined by James Watt in the 18th century, referring to mechanisms that produce a motion resembling a rolling circle.
  • Modern Cycloidal Gearboxes: The development of modern cycloidal gearboxes was further advanced by engineers like Ralph B. Heath, who patented the “Harmonic Drive” in the 1950s. This invention marked a significant step in the advancement and commercialization of precision cycloidal gear systems.
  • Advancements and Applications: Over the decades, cycloidal gear systems have found applications in robotics, aerospace, automation, and other fields that require compactness, precision, and high torque capabilities.

The history of cycloidal gear system development reflects the contributions of many engineers and inventors who have refined and advanced the technology over time. Today, cycloidal gearboxes continue to play a crucial role in various industries and applications.

cycloidal gearbox

Disadvantages of Using a Cycloidal Gearbox

While cycloidal gearboxes offer various advantages, they also come with some disadvantages that should be considered:

  • Lower Efficiency at High Speeds: Cycloidal gearboxes can experience a decrease in efficiency at high speeds due to increased friction and rolling resistance.
  • Complex Design: The internal arrangement of pins, lobes, and bearings can result in a relatively complex design, which may lead to higher manufacturing costs and maintenance challenges.
  • Limited Gear Ratio Range: Cycloidal gearboxes might have limitations in terms of achieving very high gear ratios, which can impact their suitability for certain applications.
  • Cost: The specialized design and precision manufacturing involved in producing cycloidal gearboxes can lead to higher upfront costs compared to other gearbox types.
  • Noise Generation: While generally quieter than some other types of gearboxes, cycloidal gearboxes can still produce noise during operation, which might need to be addressed in noise-sensitive applications.
  • Availability: Cycloidal gearboxes might not be as widely available as other gearbox types, potentially leading to longer lead times for procurement and replacement parts.
  • Limited Backlash Adjustability: While cycloidal gearboxes have minimal backlash, adjusting or fine-tuning the backlash might be more challenging compared to other gearbox types.

Despite these disadvantages, cycloidal gearboxes remain a valuable choice for specific applications where their unique advantages outweigh the drawbacks.

China Standard High Torque CZPT Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer   planetary gearbox	China Standard High Torque CZPT Shaft Output Bwd Xwd Series Planetary Cycloidal Gearbox for Concrete Mixer   planetary gearbox
editor by CX 2023-12-15