Product Description
Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox
Features:
1. Light in weight and non-rusting
2. Smooth in running, can work a long time in dreadful conditions
3. High efficiency, low noise
4. Good-looking in appearance, durable in service life, and small in volume
Product photo:
Specification for worm gearbox:
Model | 571 ~ 150 |
Power | 0.06kw ~ 15kw |
Input speed | 750rpm ~ 2000rpm |
Reduction ratio | 1/5 ~ 1/100 |
Input motor | AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo |
Output shaft | Solid shaft / Hollow shaft / Output flange… |
Dimension standard | Metric size / Inch size |
Material of housing | die-cast aluminum / Cast iron / Stainless steel |
Accessories | Flange / CHINAMFG shaft / Torque arm / Cover … |
FAQ
Q: Can you make the gearbox with customization?
A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.
Q: Do you provide samples?
A: Yes. The sample is available for testing.
Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.
Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.
Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.
Q: How to ship to us?
A: It is available by air, or by sea, or by train.
Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.
Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.
Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.
Application: | Motor, Machinery, Marine, Agricultural Machinery |
---|---|
Function: | Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction |
Layout: | Right Angle |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample Blue or Silver
|
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Suitability of Cycloidal Gearboxes for High-Torque Applications
Cycloidal gearboxes are well-suited for high-torque applications due to their unique design and mechanical advantages. Here’s why they are suitable:
- Multiple Engagement Points: Cycloidal gearboxes have multiple teeth in contact at any given moment, distributing the load over a larger area. This reduces wear and stress on individual teeth, making them capable of handling high torque.
- High Load-Carrying Capacity: The design of the cycloidal mechanism, with its large number of pins and rollers, provides high load-carrying capacity. This makes them capable of transmitting significant torque without failure.
- Tight Tolerances: The precision and tight tolerances in the construction of cycloidal gearboxes ensure smooth and efficient power transmission even under heavy loads.
- Compact Design: Cycloidal gearboxes achieve high torque in a relatively compact size. This is particularly advantageous in applications where space is limited.
- High Gear Ratio: Cycloidal gearboxes can achieve high gear ratios, allowing them to convert lower input speeds into higher output torque, which is essential in high-torque applications.
These factors make cycloidal gearboxes a reliable choice for various high-torque applications across industries such as heavy machinery, robotics, material handling, and more.
Noise and Vibration Considerations in Cycloidal Gearboxes
Cycloidal gearboxes are generally known for their smooth and quiet operation. However, like any mechanical system, they can still exhibit some level of noise and vibration. Here are the key factors to consider:
- Gear Design: The unique rolling contact design of cycloidal gears contributes to their relatively low noise levels. The teeth engagement is gradual and continuous, reducing impact forces and noise.
- Lubrication: Proper lubrication is essential to minimize friction and noise. Using high-quality lubricants and maintaining proper lubrication levels can help reduce noise and vibration in cycloidal gearboxes.
- Precision Manufacturing: Precise manufacturing processes and tight tolerances can help minimize irregularities in gear meshing, which can contribute to noise and vibration.
- Load Distribution: Proper load distribution among multiple lobes in the cycloidal mechanism can help prevent localized stress concentrations that could lead to vibrations and noise.
- Bearing Quality: High-quality bearings can contribute to smooth operation and reduce vibrations that could be transmitted to the gearbox housing.
- Mounting and Installation: Proper mounting and alignment of the gearbox are important to ensure that it operates smoothly and without excessive vibrations.
While cycloidal gearboxes are designed to minimize noise and vibration, it’s important to consider the specific application, environmental conditions, and operating parameters. Regular maintenance, proper lubrication, and selecting the appropriate gearbox size and type can all contribute to reducing noise and vibration levels in cycloidal gearboxes.
Disadvantages of Using a Cycloidal Gearbox
While cycloidal gearboxes offer various advantages, they also come with some disadvantages that should be considered:
- Lower Efficiency at High Speeds: Cycloidal gearboxes can experience a decrease in efficiency at high speeds due to increased friction and rolling resistance.
- Complex Design: The internal arrangement of pins, lobes, and bearings can result in a relatively complex design, which may lead to higher manufacturing costs and maintenance challenges.
- Limited Gear Ratio Range: Cycloidal gearboxes might have limitations in terms of achieving very high gear ratios, which can impact their suitability for certain applications.
- Cost: The specialized design and precision manufacturing involved in producing cycloidal gearboxes can lead to higher upfront costs compared to other gearbox types.
- Noise Generation: While generally quieter than some other types of gearboxes, cycloidal gearboxes can still produce noise during operation, which might need to be addressed in noise-sensitive applications.
- Availability: Cycloidal gearboxes might not be as widely available as other gearbox types, potentially leading to longer lead times for procurement and replacement parts.
- Limited Backlash Adjustability: While cycloidal gearboxes have minimal backlash, adjusting or fine-tuning the backlash might be more challenging compared to other gearbox types.
Despite these disadvantages, cycloidal gearboxes remain a valuable choice for specific applications where their unique advantages outweigh the drawbacks.
editor by CX 2023-10-11
China Good quality Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox differential gearbox
Product Description
Transmission Geared Motor Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox
Features:
1. Light in weight and non-rusting
2. Smooth in running, can work a long time in dreadful conditions
3. High efficiency, low noise
4. Good-looking in appearance, durable in service life, and small in volume
Product photo:
Specification for worm gearbox:
Model | 571 ~ 150 |
Power | 0.06kw ~ 15kw |
Input speed | 750rpm ~ 2000rpm |
Reduction ratio | 1/5 ~ 1/100 |
Input motor | AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo |
Output shaft | Solid shaft / Hollow shaft / Output flange… |
Dimension standard | Metric size / Inch size |
Material of housing | die-cast aluminum / Cast iron / Stainless steel |
Accessories | Flange / CHINAMFG shaft / Torque arm / Cover … |
FAQ
Q: Can you make the gearbox with customization?
A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.
Q: Do you provide samples?
A: Yes. The sample is available for testing.
Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.
Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.
Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.
Q: How to ship to us?
A: It is available by air, or by sea, or by train.
Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.
Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.
Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.
Application: | Motor, Machinery, Marine, Agricultural Machinery |
---|---|
Function: | Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction |
Layout: | Right Angle |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample Blue or Silver
|
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Materials Used in Manufacturing Cycloidal Gearboxes
Cycloidal gearboxes are constructed using a variety of materials to ensure durability, strength, and efficient operation. Some common materials used include:
- Steel: Steel is a popular choice due to its high strength and durability. It can withstand heavy loads and provides excellent wear resistance, making it suitable for industrial applications.
- Aluminum: Aluminum is chosen for its lightweight properties and corrosion resistance. It’s often used in applications where weight is a concern, such as aerospace and robotics.
- Cast Iron: Cast iron offers good heat dissipation and is known for its high resistance to wear and shock. It’s commonly used in heavy-duty applications that require high torque and strength.
- Alloys: Various alloy combinations can be used to enhance specific properties such as corrosion resistance, heat resistance, and strength.
- Plastics and Composites: In some cases, plastic or composite materials may be used, particularly in applications where low noise, lightweight construction, and corrosion resistance are essential.
The material selection depends on factors like the application’s torque, speed, environmental conditions, and desired performance characteristics. Each material offers a unique set of advantages, allowing cycloidal gearboxes to be customized to meet diverse industrial needs.
Patents Associated with Cycloidal Gearbox Designs
Throughout the history of cycloidal gearbox development, several patents have been filed for various designs and applications. Some notable patents include:
- Harmonic Drive: Ralph B. Heath’s patent for the “Harmonic Drive” (US Patent 2,906,143), filed in 1957, is one of the most famous patents related to cycloidal gear systems. This patent introduced the concept of a high-precision reduction gear mechanism using flexible components.
- Cycloidal Drive Mechanism: A patent by James Watt for a “Cycloidal Drive Mechanism” (GB Patent 1812), dating back to the 18th century, is often cited as one of the early references to cycloidal motion and gears.
- Planetary Roller Transmission: US Patent 3,671,927 by C.F. Kafesjian and H. Blumenstock introduced a “Planetary Roller Transmission” in 1972, describing a cycloidal drive mechanism with planetary motion.
- Cycloidal Speed Reducer: A patent for a “Cycloidal Speed Reducer” (US Patent 5,588,583) was granted to Richard J. Pieprzak in 1996, focusing on an improved design of cycloidal gears for various applications.
These patents represent a small sample of the numerous innovations and designs related to cycloidal gear systems that have been patented over the years. Patents play a significant role in protecting and promoting innovation in the field of gearbox technology.
Industries Benefiting from Cycloidal Gearboxes
Cycloidal gearboxes find applications in various industries where their unique characteristics are advantageous:
- Robotics and Automation: Cycloidal gearboxes are widely used in robotic systems for their compact design, high torque capacity, and precise motion control.
- Material Handling: Industries such as logistics and warehousing benefit from cycloidal gearboxes in conveyor systems due to their ability to handle heavy loads and provide smooth and accurate movement.
- Manufacturing: Equipment used in manufacturing processes, such as packaging machines and printing presses, often incorporate cycloidal gearboxes for their reliability and precise positioning.
- Aerospace: In aerospace applications, cycloidal gearboxes can be found in satellite systems, where their compactness and high torque-to-weight ratio are crucial.
- Medical Devices: Cycloidal gearboxes are used in medical equipment like robotic surgery systems for their precise movement capabilities and space-saving design.
- Defense: Military applications, such as remotely operated vehicles and surveillance equipment, benefit from cycloidal gearboxes’ ability to handle rugged conditions and provide precise control.
These industries leverage the advantages of cycloidal gearboxes to enhance the performance and efficiency of their systems.
editor by CX 2023-10-10
China Good quality Gear Ratio 31: 1 Backlash Less Than 1 Arc. Min Bevel Gearbox & Speed Variator Price with Best Sales
Product Description
Product Description
Gear Ratio 31: 1 Backlash less than 1 arc.min bevel gearbox & speed variator price
high-precision corner reducer for 5 axis machining center developed and manufactured by WEITENSTAN together with German and ZheJiang technicians for many years.
This high-precision corner reducer has high precision (backlash less than 1arcmin), low noise (68dB), and can replace the harmonic drive reducer. The life and rigidity are 3 times longer than the harmonic.
high-precision corner reducer has the characteristics of smaller, ultra-thin, lightweight and high rigidity, anti-overload and high torque. With good deceleration performance, smooth operation and accurate positioning can be achieved. Integrated design, can be directly connected with the motor, to achieve high precision, high rigidity, high durability and other advantages. It is designed for high speed ratio, high geometric accuracy, low motion loss, large torque capacity and high stiffness applications. The compact design (minimum OD ≈40mm, currently the world’s smallest precision cycloidal pin-wheel reducer) allows it to be installed in limited Spaces.
Reducer drawings
Detailed Photos
Product Advantage
Gear Ratio 31: 1 Backlash less than 1 arc.min bevel gearbox & speed variator price
advantages:
1, fine precision cycloidal structure
Ultra flat shape is achieved through differential reduction mechanism and thin cross roller bearing, contributing to the compact size of the equipment. The combination of small size and unmatched superior parameters achieves the best combination of performance, price and size (high cost performance).
2. Excellent accuracy (transmission loss ≤1 arcmin)
Through the complex meshing of precision cycloid gear and high precision roller pin, higher transmission accuracy is achieved while maintaining small size and high speed ratio.
3, high rigidity
Increase the mesh rate to disperse the load, so the rigidity is high.
4. High overload capacity
It maintains trouble-free operation under abnormally low noise and vibration conditions while ensuring excellent overturning and torsional stiffness parameters. Integrated axial radial cross roller bearings, high load capacity and overload capacity of the reducer, can ensure users to provide a variety of temperature range of applications.
5, the motor installation is simple
Electromechanical integration design, can be directly connected with the motor, any brand of motor can be installed directly, without adding any device.
6. Maintenance free
Seal grease to achieve maintenance free. No refueling, no mounting direction restrictions.
7, stable performance
The manufacturing process of high wear-resistant materials and high precision parts has been certified by ISO9000 quality system, which guarantees the reliable operation of the reducer.
Product Classification
WF Series
High Precision Miniature Reducer
WF series is a high precision micro cycloidal reducer with flange, which has a wide range of applications. This series of reducers includes precise reduction mechanisms and radial – axial roller bearings. The unique design allows load to act directly on the output flange or housing without additional bearings. WF series reducer is characterized by module design, can be installed through the flange motor and reducer, belongs to the motor directly connected reducer.
WFH Series
High Precision Miniature Reducer
WFH series is a hollow form of high precision miniature cycloidal reducer, wire, compressed air pipeline, drive shaft can be through the hollow shaft, non-motor direct connection type reducer. The WFH series is fully sealed, full of grease and includes precise deceleration mechanism and radial – axial roller bearings. The unique design allows load to be acted directly on the output flange or housing without additional bearings.
WR Series
high-precision corner reducer
The WR series is a flange output corner reducer. Like the WF and WFH series, it is a high-precision reducer (backlash less than 1 arc.min), and the level 2 can also be within 1 arc.min, which is higher than other types. Corner type reducer. It can replace the harmonic drive reducer, and its life and rigidity are more than 3 times that of the harmonic.
Product Parameters
Size | reduction ratio | Rated output moment | Allowable torque of start and stop | Instantaneous allowable moment | Rated input speed | Maximum input speed | Tilt stiffness | Torsional stiffness | No-load starting torque | Transmission accuracy | Error accuracy | Moment of inertia | Weight | |
Axis rotation | Shell rotation | Nm | Nm | Nm | rpm | rpm | Nm/arcmin | Nm/arcmin | Nm | arcmin | arcmin | kg-m² | kg | |
WR25 | 21 | 20 | 110 | 220 | 330 | 3000 | 5500 | 131 | 24 | 0.47 | P1≤±1 P2≤±3 | P1≤±1 P2≤±3 | 6.12 | 2 |
31 | 30 | 0.41 | 5.67 | |||||||||||
41 | 40 | 0.38 | 4.9 | |||||||||||
51 | 50 | 0.35 | 4.56 | |||||||||||
81 | 80 | 0.31 | 4.25 | |||||||||||
WR32 | 25 | 24 | 190 | 380 | 570 | 3000 | 4500 | 240 | 35 | 1.15 | P1≤±1 P2≤±3 | P1≤±1 P2≤±3 | 11 | 4.2 |
31 | 30 | 1.1 | 10.8 | |||||||||||
51 | 50 | 0.77 | 9.35 | |||||||||||
81 | 80 | 0.74 | 8.32 | |||||||||||
101 | 100 | 0.6 | 7.7 | |||||||||||
WR40 | 25 | 24 | 320 | 640 | 960 | 3000 | 4000 | 377 | 50 | 1.35 | P1≤±1 P2≤±3 | P1≤±1 P2≤±3 | 13.2 | 6.6 |
31 | 30 | 1.32 | 12.96 | |||||||||||
51 | 50 | 0.92 | 11.22 | |||||||||||
81 | 80 | 0.81 | 9.84 | |||||||||||
121 | 120 | 0.72 | 8.4 |
Installation Instructions
Company Profile
Q: Speed reducer grease replacement time
A: When sealing appropriate amount of grease and running reducer, the standard replacement time is 20000 hours according to the aging condition of the grease. In addition, when the grease is stained or used in the surrounding temperature condition (above 40ºC), please check the aging and fouling of the grease, and specify the replacement time.
Q: Delivery time
A: Fubao has 2000+ production base, daily output of 1000+ units, standard models within 7 days of delivery.
Q: Reducer selection
A: Fubao provides professional product selection guidance, with higher product matching degree, higher cost performance and higher utilization rate.
Q: Application range of reducer
A: Fubao has a professional research and development team, complete category design, can match any stepping motor, servo motor, more accurate matching.
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
Application: | Motor, Machinery, Agricultural Machinery, Humanoid Robot |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Vertical Type |
Customization: |
Available
| Customized Request |
---|
A Mathematical Model of a Cycloid Gearbox
Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.
Basic design principles
cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.
Low friction
Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.
Compact
Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.
High reduction ratios
Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.
Reducing amplitude of the vibration
Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.
Robust against shock loads
Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.
Inertial effects
Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
editor by CX 2023-05-31
China Transmission Geared Motor Unit Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox cycloidal drive purpose
Item Description
SRC HELICAL GEARBOX
Merchandise Description
We produce speed reducers in rigorous accordance with ISO9001 standard to provide our customers with higher good quality gearboxes at competitive charges. Our gearboxes are outfitted with accessories from international famous manufacturers, these kinds of as lubricant from Shell model, and bearing from CZPT brand name. The housing and equipment are made in our company under stringent quality handle. All our items are obtainable in huge shares, and we can also offer you with personalized reducer remedies, pleasefeel confident to make contact with us.
TRC: code for equipment units collection |
1. No code indicates foot-mounted |
2.F: B5 flange mounted |
three.Z:B14 flange mounted |
Specification code of gear models 01,02.03.04 |
B01,MO1……indicates foot code,without flange |
one.I.II1.B5 Output flange specification, defaultl not to create out is ok |
two. IECinput flange |
3.HS: Shaft input |
Transmission ratio of equipment units |
one.M1: Mounting positio, default mounting position M1 not to write out is okay |
1.No mark signifies with out motor |
2. Product motos (poles of electrical power)voltage – frequency |
voltage – frequency |
|
|
HangZhou CZPT Machinery Co., Ltd.
Heritage: Far more than 20 years of expertise in the manufacture of reducer goods.Scale: Go over operating region of 13300 square. meters,have far more than 113 employees.
Technological innovation: A group of skilled . technological engineers and a robust R&D group.
Administration: Scientific ERP management and rigid quality management program.
Products: 50 CNC lathes,6 machining. facilities, 6 gear grinding equipment, 2 substantial-velocity.tough hobbing devices, 12 gear hobbing
equipment. ten CNC cylindrical grinding equipment,4 CNC interior grinding equipment 1spectrometer, substantial-pace gear shaping 1 equipment,
2 gear measuring centers 1 coordinate measuring instrument.
lnnovation: Repeatedly diversify products selection to satisfy customers’needs.Production ability: a thousand pcs/working day.
Lengthy-expression supplier of world-class firms: t he principal marketplaces are in Southea st Asia, Europe, Middle East.
Marketing and advertising product: All export organization.
To Be Negotiated | 1 Piece (Min. Order) |
###
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car |
---|---|
Hardness: | Hardened Tooth Surface |
Step: | Double-Step |
Type: | Gear Reducer |
Transport Package: | 1PCS/1box |
Specification: | aluminium |
###
Customization: |
---|
###
TRC: code for gear units series
|
1. No code means foot-mounted
|
2.F: B5 flange mounted
|
3.Z:B14 flange mounted
|
Specification code of gear units 01,02.03.04
|
B01,MO1……means foot code,without flange
|
1.I.II1.B5 Output flange specification, defaultl not to write out is ok
|
2. IECinput flange
|
3.HS: Shaft input
|
Transmission ratio of gear units
|
1.M1: Mounting positio, default mounting position M1 not to write out is ok
|
1.No mark means without motor
|
2. Model motos (poles of power)voltage – frequency
|
voltage – frequency
|
|
|
To Be Negotiated | 1 Piece (Min. Order) |
###
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car |
---|---|
Hardness: | Hardened Tooth Surface |
Step: | Double-Step |
Type: | Gear Reducer |
Transport Package: | 1PCS/1box |
Specification: | aluminium |
###
Customization: |
---|
###
TRC: code for gear units series
|
1. No code means foot-mounted
|
2.F: B5 flange mounted
|
3.Z:B14 flange mounted
|
Specification code of gear units 01,02.03.04
|
B01,MO1……means foot code,without flange
|
1.I.II1.B5 Output flange specification, defaultl not to write out is ok
|
2. IECinput flange
|
3.HS: Shaft input
|
Transmission ratio of gear units
|
1.M1: Mounting positio, default mounting position M1 not to write out is ok
|
1.No mark means without motor
|
2. Model motos (poles of power)voltage – frequency
|
voltage – frequency
|
|
|
A Mathematical Model of a Cycloid Gearbox
Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.
Basic design principles
cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.
Low friction
Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.
Compact
Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.
High reduction ratios
Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.
Reducing amplitude of the vibration
Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.
Robust against shock loads
Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.
Inertial effects
Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
editor by CX 2023-03-30
China Transmission Motor Gearbox Unit Wp Nmrv Swl Screw Drive Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Speed Variator Gear Reducer Gearbox cycloidal drive purpose
Product Description
Transmission Motor Gearbox Device Wp Nmrv Swl Screw Generate Lifts Stepper Cyclo Cycloidal Extruder Helical Planetary Bevel Worm Pace Variator Gear Reducer Gearbox
Functions
1. Compact structure and straightforward assembly
2. Broad velocity ranges and higher torque
3. Reduced sound, great sealing performance, substantial efficiency
four. Secure and safe, long life time, universal
5. Multi-structure, different assembling strategies
Product Photographs
Item Description
ANG Helical Equipment Reducer | |
Product | R17 ~ 187, F37-177, K37-187, S37-ninety seven, HB01-26 |
Enter power | .06kw ~ 5000kw |
Input pace | 750rpm ~ 3000rpm |
Reduction ratio | 1/1.3 ~ 1/27000 |
Enter motor | AC (1 period or 3 stage) / DC / BLDC motor |
Install kind | Foot / CZPT shaft / Hollow shaft / Output flange… |
Performance | ninety four% ~ ninety eight % for R F K sequence |
Material of housing | die-forged aluminum / Cast iron / Stainless metal |
Precision of equipment | Exact grinding, class six |
Heat remedy | Carburizing and quenching |
Equipment | Brake / Flange / Motor adapter / Torque arm … |
Benefits
FAQ
Q: Can you make the gearbox with customization?
A: Sure, we can customise for every your request, like electrical power, voltage, speed, shaft measurement, flange, terminal box, IP grade, etc.
Q: Do you supply samples?
A: Of course. The sample is available for testing.
Q: What is your MOQ?
A: It is 1pcs for the starting of our enterprise.
Q: What’s your guide time?
A: Common solution want 5-30days, a little bit longer for custom-made products.
Q: Do you give complex support?
A: Of course. Our company have design and improvement team, we can give specialized help if you
require.
Q: How to ship to us?
A: It is accessible by air, or by sea, or by train.
Q: How to pay the income?
A: T/T and L/C are preferred, with a distinct forex, including USD, EUR, RMB, and many others.
Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd examination sample >3rd commence mass creation.
Q: Can I appear to your company to go to?
A: Yes, you are welcome to pay a visit to us at any time.
Q: How shall we speak to you?
A: You can send inquiry directly, and we will answer within 24 hours.
/ Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Machinery |
---|---|
Function: | Change Drive Torque |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Samples: |
US$ 300/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
###
ANG Helical Gear Reducer | |
Model | R17 ~ 187, F37-177, K37-187, S37-97, HB01-26 |
Input power | 0.06kw ~ 5000kw |
Input speed | 750rpm ~ 3000rpm |
Reduction ratio | 1/1.3 ~ 1/27000 |
Input motor | AC (1 phase or 3 phase) / DC / BLDC motor |
Install type | Foot / Solid shaft / Hollow shaft / Output flange… |
Efficiency | 94% ~ 98 % for R F K series |
Material of housing | die-cast aluminum / Cast iron / Stainless steel |
Precision of gear | Accurate grinding, class 6 |
Heat treatment | Carburizing and quenching |
Accessories | Brake / Flange / Motor adapter / Torque arm … |
/ Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Machinery |
---|---|
Function: | Change Drive Torque |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Samples: |
US$ 300/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
---|
###
ANG Helical Gear Reducer | |
Model | R17 ~ 187, F37-177, K37-187, S37-97, HB01-26 |
Input power | 0.06kw ~ 5000kw |
Input speed | 750rpm ~ 3000rpm |
Reduction ratio | 1/1.3 ~ 1/27000 |
Input motor | AC (1 phase or 3 phase) / DC / BLDC motor |
Install type | Foot / Solid shaft / Hollow shaft / Output flange… |
Efficiency | 94% ~ 98 % for R F K series |
Material of housing | die-cast aluminum / Cast iron / Stainless steel |
Precision of gear | Accurate grinding, class 6 |
Heat treatment | Carburizing and quenching |
Accessories | Brake / Flange / Motor adapter / Torque arm … |
A Mathematical Model of a Cycloid Gearbox
Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.
Basic design principles
cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.
Low friction
Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.
Compact
Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.
High reduction ratios
Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.
Reducing amplitude of the vibration
Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.
Robust against shock loads
Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.
Inertial effects
Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
editor by CX 2023-03-27
China Xb Cycloidal Pin Wheel Speed Gearbox Variator Drive Power Transmission Cycloidal Gearbox Gear Box Marine Engine with Gearbox cycloidal gear reducer design
Merchandise Description
X / B series cycloidal gearbox speed reducer
Swift Particulars:
Type: XB sequence Cycloidal Pin Wheel Pace Reducer
Input Velocity: 1000-1500rmp
Output Velocity: .3-280rpm
Certification: ISO9001 CE
Ex Energy:.09-132KW
Warranty: 1Years
Enter Pace |
≤2000rpm |
Output Velocity |
Solitary-phase:11-136rpm |
Power Variety |
Single-phase:.37-75Kw |
Assemble Variety |
Foot-mounted horizontal and flange vertical |
Brand name |
Goldgun |
Ratio |
One-stage:11,seventeen,23,29,35,43,59,71,87 |
Relevant Products
Business Info
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car |
---|---|
Function: | Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) |
---|
###
Input Speed
|
≤2000rpm
|
Output Speed
|
Single-stage:11-136rpm
Two-stage:1.78-12.4rpm |
Power Range
|
Single-stage:0.37-75Kw
Two-stage:0.25-18.5Kw |
Assemble Type
|
Foot-mounted horizontal and flange vertical
|
Brand
|
Goldgun
|
Ratio
|
Single-stage:11,17,23,29,35,43,59,71,87
Two-stage:121,187,289,391,473,595,731,841,1003,1225,1505 |
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car |
---|---|
Function: | Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) |
---|
###
Input Speed
|
≤2000rpm
|
Output Speed
|
Single-stage:11-136rpm
Two-stage:1.78-12.4rpm |
Power Range
|
Single-stage:0.37-75Kw
Two-stage:0.25-18.5Kw |
Assemble Type
|
Foot-mounted horizontal and flange vertical
|
Brand
|
Goldgun
|
Ratio
|
Single-stage:11,17,23,29,35,43,59,71,87
Two-stage:121,187,289,391,473,595,731,841,1003,1225,1505 |
The Cyclonoidal Gearbox
Basically, the cycloidal gearbox is a gearbox that uses a cycloidal motion to perform its rotational movement. It is a very simple and efficient design that can be used in a variety of applications. A cycloidal gearbox is often used in applications that require the movement of heavy loads. It has several advantages over the planetary gearbox, including its ability to be able to handle higher loads and higher speeds.
Dynamic and inertial effects of a cycloidal gearbox
Several studies have been conducted on the dynamic and inertial effects of a cycloidal gearbox. Some of them focus on operating principles, while others focus on the mathematical model of the gearbox. This paper examines the mathematical model of a cycloidal gearbox, and compares its performance with the real-world measurements. It is important to have a proper mathematical model to design and control a cycloidal gearbox. A cycloidal gearbox is a two-stage gearbox with a cycloid disc and a ring gear that revolves around its own axis.
The mathematical model is made up of more than 1.6 million elements. Each gear pair is represented by a reduced model with 500 eigenmodes. The eigenfrequency for the spur gear is 70 kHz. The modally reduced model is a good fit for the cycloidal gearbox.
The mathematical model is validated using ABAQUS software. A cycloid disc was discretized to produce a very fine model. It requires 400 element points per tooth. It was also verified using static FEA. This model was then used to model the stiction of the gears in all quadrants. This is a new approach to modelling stiction in a cycloidal gearbox. It has been shown to produce results comparable to those of the EMBS model. The results are also matched by the elastic multibody simulation model. This is a good fit for the contact forces and magnitude of the cycloid gear disc. It was also found that the transmission accuracy between the cycloid gear disc and the ring gear is about 98.5%. However, this value is lower than the transmission accuracy of the ring gear pair. The transmission error of the corrected model is about 0.3%. The transmission accuracy is less because of the lower amount of elastic deformation on the tooth flanks.
It is important to note that the most accurate contact forces for each tooth of a cycloid gearbox are not smooth. The contact force on a single tooth starts with a linear rise and then ends with a sharp drop. It is not as smooth as the contact force on a point contact, which is why it has been compared to the contact force on an ellipse contact. However, the contact on an ellipse contact is still relatively small, and the EMBS model is not able to capture this.
The FE model for the cycloid disc is about 1.6 million elements. The most important part of the FE model is the discretization of the cycloid disc. It is very important to do the discretization of the cycloid gear disc very carefully because of the high degree of vibration that it experiences. The cycloid disc has to be discretized finely so that the results are comparable to those of a static FEA. It has to be the most accurate model possible in order to be able to accurately simulate the contact forces between the cycloid disc and the ring gear.
Kinematics of a cycloidal drive
Using an arbitrary coordinate system, we can observe the motion of components in a cycloidal gearbox. We observe that the cycloidal disc rotates around fixed pins in a circle, while the follower shaft rotates around the eccentric cam. In addition, we see that the input shaft is mounted eccentrically to the rolling-element bearing.
We also observe that the cycloidal disc rotates independently around the eccentric bearing, while the follower shaft rotates around an axis of symmetry. We can conclude that the cycloidal disc plays a pivotal role in the kinematics of a cycloidal gearbox.
To calculate the efficiency of the cycloidal reducer, we use a model that is based on the non-linear stiffness of the contacts. In this model, the non-linearity of the contact is governed by the non-linearity of the force and the deformation in the contact. We have shown that the efficiency of the cycloidal reducer increases as the load increases. In addition, the efficiency is dependent on the sliding velocity and the deformations of the normal load. These factors are considered as the key variables to determine the efficiency of the cycloidal drive.
We also consider the efficiency of the cycloidal reducer with the input torque and the input speed. We can calculate the efficiency by dividing the net torque in the ring gear by the output torque. The efficiency can be adjusted to suit different operating conditions. The efficiency of the cycloidal drive is increased as the load increases.
The cycloidal gearbox is a multi-stage gearbox with a small shaft oin and a big shaft. It has 19 teeth and brass washers. The outer discs move in opposition to the middle disc, and are offset by 180 deg. The middle disc is twice as massive as the outer disc. The cycloidal disc has nine lobes that move by one lobe per drive shaft revolution. The number of pins in the disc should be smaller than the number of pins in the surrounding pins.
The input shaft drives an eccentric bearing that is able to transmit the power to the output shaft. In addition, the input shaft applies forces to the cycloidal disk through the intermediate bearing. The cycloidal disk then advances in 360 deg/pivot/roller steps. The output shaft pins then move around in the holes to make the output shaft rotate continuously. The input shaft applies a sinusoidal motion to maintain the constant speed of the base shaft. This sine wave causes small adjustments to the follower shaft. The forces applied to the internal sleeves are a part of the equilibrium mechanism.
In addition, we can observe that the cycloidal drive is capable of transmitting a greater torque than the planetary gear. This is due to the cycloidal gear’s larger axial length and the ring gear’s smaller hole diameter. It is also possible to achieve a positive fit between the fixed ring and the disc, which is achieved by toothing between the fixed ring and the disc. The cycloidal disk is usually designed with a short cycloid to minimize unbalance forces at high speeds.
Comparison with planetary gearboxes
Compared to planetary gearboxes, the cycloidal gearbox has some advantages. These advantages include: low backlash, better overload capacity, a compact design, and the ability to perform in a wide range of applications. The cycloidal gearbox has become popular in the multi-axis robotics market. The gearbox is also increasingly used in first joints and positioners.
A cycloidal gearbox is a gearbox that consists of four basic components: a cycloid disk, an output flange, a ring gear, and a fixed ring. The cycloid disk is driven by an eccentric shaft, which advances in a 360deg/pivot/roller step. The output flange is a fixed pin disc that transmits the power to the output shaft. The ring gear is a fixed ring, and the input shaft is connected to a servomotor.
The cycloidal gearbox is designed to control inertia in highly dynamic situations. These gearboxes are generally used in robotics and positioners, where they are used to position heavy loads. They are also commonly used in a wide range of industrial applications. They have higher torque density and a low backlash, making them ideal for heavy loads.
The output flange is also designed to handle a torque of up to 500 Nm. Its rotational speed is lower than the planet gearbox, but its output torque is much higher. It is designed to be a high-performance gearbox, and it can be used in applications that need high ratios and a high level of torque density. The cycloid gearbox is also less expensive and has less backlash. However, the cycloidal gearbox has disadvantages that should be considered when designing a gearbox. The main problem is vibrations.
Compared to planetary gearboxes, cycloidal gearboxes have a smaller overall size and are less expensive. In addition, the cycloid gearbox has a large reduction ratio in one stage. In general, cycloidal gearboxes have single or two stages, with the third stage being less common. However, the cycloid gearbox is not the only type of gearbox that has this type of configuration. It is also common to find a planetary gearbox with a single stage.
There are several different types of cycloidal gearboxes, and they are often referred to as cycloidal speed reducers. These gearboxes are designed for any industry that uses servos. They are shorter than planetary gearboxes, and they are larger in diameter for the same torque. Some of them are also available with a ratio lower than 30:1.
The cycloid gearbox can be a good choice for applications where there are high rotational speeds and high torque requirements. These gearboxes are also more compact than planetary gearboxes, and are suitable for high-torque applications. In addition, they are more robust and can handle shock loads. They also have low backlash, and a higher level of accuracy and positioning accuracy. They are also used in a wide range of applications, including industrial robotics.
editor by czh 2023-01-20
China Foshan Good Quality Cycloidal Speed Variator Gearbox cycloidal drive mechanism
Solution Description
Starshine Travel Cycloid Geared Motor Traits
1. Features:
one. Smooth operating,reduced sounds equipment tooth needle a lot more engagement.
2. Cycloidal tooth profile offers a substantial speak to ratio to endure overload shocks
3. Compact measurement: one ratio accessible from 1/9 to 1/87, double stage up from 1/99 to 1/7569
4. Excellent for dynamic programs: recurrent start off-quit-reversing duties suits for cyclo speed reducer considering that inertia is minimal
5. Reduce routine maintenance fees: large trustworthiness, lengthy existence, minimum routine maintenance in comparison to standard gearboxes
six. Inner elements replaceable with other makes to ensure managing.
7. Grease Lubricated & Oil Lubricated Types Obtainable
eight. Output Shaft Rotation Course: One Reduction: Clockwise Rotation Double Reduction→ Counter Clockwise Rotation
nine. Ambient Circumstances: Indoor Set up:ten-40 Celsius, Max 85% Humidity, Underneath 1000m Altitude, Effectively Ventilated Environment, Totally free of corrosive, explosive gases, vapors and dust
ten.Gradual Velocity Shaft Path: Horizontal, Vertical Up & Down, Universal Course
11.Mounting Type: Foot Mount, Flange Mount & Vertical F-flange Mount,
12. Enter Link: Cyclo Integral Motor, Hollow Input Shaft Adapter
thirteen. Coupling Approach With Driven Machine: Coupling, Gears, Chain Sprocket Or Belt
fourteen. Cycloid reducer Capability Assortment: .37kW ~ 11kW
2. Technical parameters
Type | Previous Sort | Output Torque | Output Shaft Dia. |
SXJ00 | JXJ00 | 98N.m | φ30 |
SXJ01 | JXJ01 | 221N.m | φ35 |
SXJ02 | JXJ02 | 448N.m | φ45 |
SXJ03 | JXJ03 | 986N.m | φ55 |
SXJ04 | JXJ04 | 1504N.m | φ70 |
SXJ05 | JXJ05 | 3051N.m | φ90 |
SXJ06 | JXJ06 | 5608N.m | φ100 |
About Us
ZheJiang CZPT Co.,Ltd,the predecessor was a point out-owned military CZPT company, was established in 1965. CZPT specializes in the full electrical power transmission solution for large-finish equipment manufacturing industries primarily based on the purpose of “Platform Product, Software Design and style and Expert Service”.
Starshine have a powerful specialized power with above 350 personnel at existing, like above thirty engineering professionals, 30 high quality inspectors, masking an spot of 80000 sq. meters and sorts of sophisticated processing devices and testing equipments. We have a excellent basis for the industry software advancement and support of higher-conclude velocity reducers & variators possessing to the provincial engineering technology research heart,the lab of equipment pace reducers, and the base of contemporary R&D.
Our Staff
High quality Handle
Quality:Insist on Improvement,Strive for Excellence With the development of equipment manufacturing indurstry,customer never satirsfy with the current quality of our products,on the contrary,wcreate the value of quality.
Quality policy:to enhance the overall level in the field of power transmission
Quality View:Continuous Improvement , pursuit of excellence
Quality Philosophy:Quality creates value
3. Incoming Quality Control
To establish the AQL acceptable level of incoming material control, to provide the material for the whole inspection, sampling, immunity. On the acceptance of qualified products to warehousing, substandard goods to take return, check, rework, rework inspection responsible for tracking bad, to monitor the supplier to take corrective
measures to prevent recurrence.
4. Process Quality Control
The manufacturing site of the first examination, inspection and final inspection, sampling according to the requirements of some projects, judging the quality change trend
found abnormal phenomenon of manufacturing, and supervise the production department to improve, eliminate the abnormal phenomenon or state.
5. FQC(Final QC)
After the manufacturing department will complete the product, stand in the customer’s position on the finished product quality verification, in order to ensure the quality of
customer expectations and needs.
6. OQC(Outgoing QC)
After the product sample inspection to determine the qualified, allowing storage, but when the finished product from the warehouse before the formal delivery of the goods, there is a check, this is called the shipment inspection.Check content:In the warehouse storage and transfer status to confirm, while confirming the delivery of the
solution is a product inspection to determine the qualified products.
7. Certification.
Packing
Shipping and delivery
US $86.84-645.69 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Machinery, Agricultural Machinery |
---|---|
Function: | Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction |
Layout: | Cycloidal |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Double-Step |
###
Customization: |
Available
|
---|
###
Type | Old Type | Output Torque | Output Shaft Dia. |
SXJ00 | JXJ00 | 98N.m | φ30 |
SXJ01 | JXJ01 | 221N.m | φ35 |
SXJ02 | JXJ02 | 448N.m | φ45 |
SXJ03 | JXJ03 | 986N.m | φ55 |
SXJ04 | JXJ04 | 1504N.m | φ70 |
SXJ05 | JXJ05 | 3051N.m | φ90 |
SXJ06 | JXJ06 | 5608N.m | φ100 |
US $86.84-645.69 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Machinery, Agricultural Machinery |
---|---|
Function: | Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction |
Layout: | Cycloidal |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Double-Step |
###
Customization: |
Available
|
---|
###
Type | Old Type | Output Torque | Output Shaft Dia. |
SXJ00 | JXJ00 | 98N.m | φ30 |
SXJ01 | JXJ01 | 221N.m | φ35 |
SXJ02 | JXJ02 | 448N.m | φ45 |
SXJ03 | JXJ03 | 986N.m | φ55 |
SXJ04 | JXJ04 | 1504N.m | φ70 |
SXJ05 | JXJ05 | 3051N.m | φ90 |
SXJ06 | JXJ06 | 5608N.m | φ100 |
Condition Monitoring of Cyclone Gearboxes
Whether you’re considering using a cycloidal gearbox in your home, office, or garage, you’ll want to make sure it’s made of quality material. You also want to make sure it’s designed properly, so it won’t be damaged by vibrations.
Planetary gearboxes
Compared to cycloidal gearboxes, planetary gearboxes are lighter and more compact, but they lack the precision and durability of the former. They are better suited for applications with high torque or speed requirements. For this reason, they are usually used in robotics applications. But, cycloidal gearboxes are still better for some applications, including those involving shock loads.
There are many factors that affect the performance of gearboxes during production. One of these is the number of teeth. In the case of planetary gearboxes, the number of teeth increases with the number of planets. The number of teeth is reduced in cycloidal gearboxes, which results in higher transmission ratios. These gearboxes also have lower breakaway torques, which means that they can be controlled more easily by the user.
A cycloid gearbox is comprised of three main parts: the ring gear, the sun gear, and the input shaft. The ring gear is fixed in the gearbox, while the sun gear transmits the rotation to the planet gears. The input shaft transfers motion to the sun gear, which in turn transmits it to the output shaft. The output shaft has a larger torque than the input shaft.
Cycloid gears have better torsional stiffness, lower wear, and lower Hertzian contact stress. However, they are also larger in size and require highly accurate manufacturing. Cycloid gears can be more difficult to manufacture than involute gears, which require large amounts of precision.
Cycloid gears can offer transmission ratios up to 300:1, and they can do this in a small package. They also have lower wear and friction, which makes them ideal for applications that require a high transmission ratio.
Cycloid gearboxes are usually equipped with a backlash of about one angular minute. This backlash provides the precision and control necessary for accurate movement. They also provide low wear and shock load capacity.
Planetary gearboxes are available in single and two-stage designs, which increase in length as stages are added. In addition to the two stages, they can be equipped with an optional output bearing, which takes up mounting space. In some applications, a third stage is also available.
Involute gears
Generally, involute gears are more complex to manufacture than cycloidal gears. For example, an involute gear tooth profile has a single curve while a cycloidal gear tooth profile has two curves. In addition, the involute curve is not within the base circle.
The involute curve is a very important component of a gear tooth and it can significantly influence the quality of contact meshing between teeth. Various works have been done on the subject, mainly focusing on the operating principles. In addition, the most important characteristic of the double-enveloping cycloid drive is its double contact lines between the meshing tooth pairs.
Cycloid gears are more powerful, less noisy, and last longer than involute gears. They also require less manufacturing operations during production. However, cycloid gears are more expensive than involute gears. Involute gears are more commonly used in linear motions while cycloid gears are used for rotary motions.
Although cycloid gears are more technically advanced, involute gears have the superior quality and are more aesthetically pleasing. Cycloid gears are used in various industrial applications such as pumps and compressors. They are also widely used in the watch industry. Nevertheless, involute gears have not yet replaced cycloid gears in the watch industry.
The cycloid disc has a number of pins around its outer edge, while an involute gear has only a single curve for the teeth. In addition, cycloid gears have a more robust and reliable design. Involute gears, on the other hand, have a cheaper rack cutter and less expensive involute teeth.
The cycloid disc’s transmission accuracy is about 98.5%, while the ring gear’s transmission accuracy is about 96%. The cycloid disc’s rotational velocity has a magnitude of 3 rad/s. A small change in the center distance does not affect the transmission accuracy. However, rotational velocity fluctuation can affect the transmission accuracy.
Cycloid gears also have the cycloid gear disc’s rotational velocity. The disc has N lobes. However, the cycloid gear disc’s transmission accuracy is still not perfect. This is because of the large rotational angles between the lobes. This also makes it difficult to manufacture.
Vibrations
Using modern techniques for vibration diagnostics and data-driven methods, this article presents a new approach to condition monitoring of cycloidal gearboxes. This approach focuses on detecting the root cause of gearbox failure. The article aims to provide a unified approach to gear designers.
A cycloidal gearbox is a high-precision gearbox that is used in heavy-duty machines. It has a large reduction ratio, which makes it necessary to have a very large input speed. Cycloid gears have high accuracy, but they are susceptible to vibration issues. In this article, the authors describe how a cycloidal gearbox works and how vibrations are measured. They also show how this gearbox can be used to detect faults.
The gearbox is used in positioners, multi-axis robots, and heavy-duty machines. The main characteristics of this gearbox are the high accuracy, the overload capacity, and the large reduction ratio.
There is little documentation on vibrations and condition monitoring of cycloidal gearboxes. The authors describe their approach to the problem, using a cycloidal gearbox and a testing bench. Their approach involves measuring the frequency of the gearbox with different input speeds.
The results show a good separation between the healthy and damaged states. Fault frequencies show up in the lower orders of frequencies. Faults can be detected using binning, which eliminates the need for a tachometer. In addition, binning is combined with Principal Component Analysis to determine the state of the gearbox.
This method is compared to traditional techniques. In addition, the results show how binning can be used to calculate the defect frequencies of the bearings. It is also used to determine the frequencies of the components.
The signals from the test bench are acquired using four sensors. These sensors are medium sensitivity 100 mV/g accelerometers. The signals are then processed using different signal processing techniques. The results show that the vibration signals are correlated with the internal motion of the gearbox. This information is used to identify the internal frequency of the transmission.
The frequency analysis of vibration signals is performed in cyclostationary and noncyclostationary conditions. The signals are then analyzed to determine the magnitude of the gear meshing frequency.
Design
Using precision gearboxes, servomotors can now control heavy loads at high speed. Unlike cam indexing devices, cycloidal gears provide extremely accurate positioning and high torque. They also provide excellent torsional stiffness and shock load capacity.
Cycloid gears are specially designed to minimize vibration at high RPM. Unlike involute gears, they are not stacked, which reduces friction and forces experienced by each tooth. In addition, cycloidal gears have lower Hertzian contact stress.
Cycloid gears are often used in multi-axis robots for positioners. They can provide transmission ratios as high as 300:1 in a compact package. They are also used in first joints in heavy machines. However, they require extremely accurate manufacturing. They are also more difficult to produce than involute gears.
A cycloidal gearbox is a type of planetary gearbox. Cycloid gears are specially designed for high gear ratios. They also have the ability to provide a large reduction ratio in a single stage. They are increasingly used in first joints in heavy machines. They are also becoming more common in robotics.
In order to achieve a large reduction ratio, the input speed of the gear must be very high. Generally, the input speed is between 500 rpm and 4500 rpm. However, in some cases, the input speed may be lower.
A cycloid is formed by rolling a rolling circle on a base circle. The ratio between the rolling circle diameter and the base circle diameter determines the shape of the cycloid. A hypocycloid is formed by rolling primarily on the inside of the base circle, while an epicycloid is formed by rolling primarily on the outside of the base circle.
Cycloid gears have a very small backlash, which minimizes the forces experienced by each tooth. These gears also have a good torsional stiffness, low friction, and shock load capacity. They also provide the best positioning accuracy.
The cycloidal gearbox was designed and built at Radom University. The design was based on three different cycloidal gears. The first pair had the external profile at the nominal dimension, while the second pair had the profile minus tolerance. The load plate had threaded screw holes arranged 15 mm away from the center.
editor by czh 2022-12-17
China TA Torque arm Shaft mounted reducer aluminium body gear box lifting jacks hydraulic gearbox 4 way hydraulic speed variator gearbox drive shaft
Applicable Industries: Building Material Shops
Gearing Arrangement: Helical
Output Torque: 137~9800 N.m
Input Speed: 1400rpm
Output Speed: 46~280RPM
Color: Blue / Grey / Customer requirement
Packaging Details: wooden Case per pc + many pcs in wooden case
Port: Chinese Port
Product Application
Conveyor & Material HandlingMining & Quarry
SLXG Shaft Mounted Reducer | Output Shaft Bore [mm] | Ratio(i) | Rated torque |
SLXG30 | Φ30 | 7, 10, 12.5 | 180N.m |
SLXG35 | Φ35 | 5,10,15,20,25 | 420N.m |
SLXG40 | Φ40 | 5,10,12.5,15,20,25 | 900N.m |
Φ45 | |||
SLXG45 | Φ45 | 5,10,12.5,15,20,25 | 1400N.m |
Φ50 | |||
Φ55 | |||
SLXG50 | Φ50 | 5,10,12.5,15,20,25 | 2300N.m |
Φ55 | |||
Φ60 | |||
SLXG60 | Φ60 | 5,10,12.5,15,20,25 | 3600N.m |
Φ70 | |||
SLXG70 | Φ70 | 5,10,12.5,15,20,25,31 | 5100N.m |
Φ85 | |||
SLXG80 | Φ80 | 5,10,12.5,15,20,25,31 | 7000N.m |
Φ100 | |||
SLXG100 | Φ100 | 5,10,12.5,15,20,25,31 | 11000N.m |
Certifications
Trade Shows
Packaging & ShippingPacking Details : Standard carton/Pallet/Standard wooden case
Delivery Details : 15-30 working days upon payment
Company Information
other series product
Precision Planetary gearbox | Robot RV gearbox speed reducer |
Custom made Non-standard Gearbox | UDL Series Variator |
PYZ Series Helical Tooth Shaft Mounted Reducer | 8000 Series Cycloidal Reducer |
SLT Series Spiral Bevel Gearbox | SLSWL Series Worm Screw Jack |
SLP Series Planetary Reducer | SLH/SLB Series High Power Reducer |
NMRV Series Worm Reducer | BKM Series Helical-hypoid Reducer |
SLRC Series Helical Reducer | SLSMR Series Shaft Mounted Reducer |
SLXG Series Shaft Mounted Reducer | X/B Series Cycloidal Reducer |
SLR/SLF/SLK/SLS Series Helical Reducer |
Related Products
Contact
Types of Gearboxes Used in Wind Turbines
Many manufacturers of wind turbines have chosen different solutions for the drive train of the turbines. Most prefer gearboxes because of their durability. These have several design features that make them well suited to shocks, stresses and wear. Regardless of the type of gearbox used, continuous maintenance and monitoring can extend the lifespan of these machines. Performing these tasks regularly can help detect and resolve any problems before they become serious. Here are some of the problems associated with gearboxes.
Coaxial helical gearbox
The R series helical inline gearbox is a high-quality speed reducer for heavy-duty industrial applications. These units are designed with increased power density in mind and are equipped with various cooling options. High-grade seals and lubricants help to increase efficiency and minimize thermal loading. They are ATEX-compliant. Their reversible modules are an excellent choice for high-speed applications, such as compressors, compressor blowers, and pumps.
The normal module set of helical gearbox is manufactured using the same tooth-cutting techniques as spur gears. This allows the production of higher-quality, more economical, and more compact helical gears. Although the performance of helical gears is lower than spur gears, they are durable and capable of transferring motion and power between two shafts. And because they are able to handle a much greater load, they are preferred for heavy-duty applications.
The main tooth form of a helical gearbox presents fixed velocity ratios, even if the center gap is not completely set. This requirement is sometimes referred to as the fundamental rule of gearing. A helical gearbox is similar to a set of paper spur gears, with the exception that the sections must stagger in opposite directions. There are two kinds of helical gears for parallel shafts: left-handed and right-handed.
The Industrial Gearbox market is segmented based on product type, application, and geography. The report analyzes the competitive scenario by segmenting the market by region, company, and type. Using this information, it estimates market size, revenue, and consumption. The report also features key information about COVID-19 and its impact on the overall industry. And it also provides a competitive landscape with industry-leading players.
Industrial gearboxes are integrated with devices and make automation processes more efficient and reliable. Increasing labor costs, shortage of skilled labor, and the ageing workforce are driving the demand for automation technologies. The industry requires newer and more advanced models and technologies to compete in the global market. You can use Coaxial helical gearbox in a variety of applications. Its benefits are endless. If you are looking for a reliable, high-performance industrial gearbox, CZPT can help you find it.
Worm reduction gearbox
As a general rule, larger center distance worm reduction gearboxes are more efficient than smaller ones. Worm gearboxes with 2.6-in. center distances start to lose efficiency as their ratios increase. Larger center distances tend to have higher efficiency than smaller ones. However, this difference may not always be enough to justify the higher investment. Worm gear reducers typically cost less than equivalent helical units.
The use of aluminum for worm reduction gearboxes is a popular choice for those involved in the manufacturing of Packaging Equipment. In addition to being lightweight, aluminum worm reduction gearboxes have high strength and rigidity. Manufacturers recommend this choice because of its high rigidity and durability. While purchasing aluminum worm reduction gearboxes, keep in mind that they are more expensive than steel versions. However, they have a longer lifespan and are highly resistant to wear.
The worm’s helix angle is larger than a helical gear, which allows a much higher gear ratio. In addition, the worm’s body is usually longer in the axial direction than helical gears. Worm reduction gears are often left-handed, and British or Indian standards are usually followed. The worm wheel is made of hardened alloy steel PB2-C, while the gearbox case is made of hardened alloy steel FG 220 or FG 250res.
The worms in a sacrificial system are relatively safe from wear. Instead, the softer wheel is the cause of most wear and tear. The oil analysis report for a sacrificial system shows low iron levels and high copper concentrations. However, if a worm reduction gearbox has a bad reputation, you should consider purchasing a new one. If the worm gears are in good condition, the gearbox is still a viable option for a new or replacement vehicle.
The advantages of a worm reduction gearbox are numerous. The worm gearbox is widely used in industrial settings, where it provides torque and speed reduction to move products. Worm gearboxes are also commonly used in automatic security gates, which will not run in reverse. Most security gates use two separate worm drives to keep the gate in the closed position. There are also many other uses for worm reducers. You can learn more about the benefits of worm gearboxes by reading below.
Stainless steel gearbox
Stainless steel gearboxes offer a number of advantages over standard gearboxes. They match the existing stainless motor design and cost 50 percent more on average. They have stainless output shafts and housings as well as corrosion resistant hardware and a food grade lubricant. Stainless steel gearboxes feature IP 65 sealing, Viton shaft seals at the input and output shafts, and a Buna o-ring between the housings. Stainless steel gearboxes also eliminate flat surfaces and allow for a cylindrical design.
Stainless steel gearboxes are more durable than traditional cast iron or epoxy-painted gearboxes. These gearboxes can withstand repeated washdown operations without damage. They also do not collect particles or bacteria. And because stainless steel does not corrode, stainless steel gearboxes can withstand harsh environments, such as oily or greasy environments. Because stainless steel gearboxes are corrosion-resistant, they require little maintenance. They are also easier to clean and maintain, resulting in fewer replacements and a longer life span for your gearbox.
Stainless steel gearboxes are a great choice for food and other industries that require high hygiene standards. In addition to its durability, stainless steel gearboxes are ideal for applications in environments that require high levels of humidity and water. They are also life-lubricated, and they can be supplied with food-grade oils or water. The CZPT Gears stainless gearbox is a versatile option for a variety of applications.
Stainless steel gearboxes offer superior corrosion protection and can withstand harsh environments. The stainless steel cover, housing, and external hardware ensure superior corrosion protection. If you have questions about the varying benefits of stainless steel gearboxes, contact a CZPT Gear sales representative to learn more about your options. And if you are not sure which type is right for your needs, contact a CZPT Gear sales representative to find the perfect solution for your business.
1 speed gearbox
Volkswagen Group Components manufactures the one speed gearbox. The gearbox has a high-performance electric drive motor that produces 310 Nm of torque over a wide speed range. Designed for maximum range, this gearbox uses a single gear for all driving situations. It is extremely quiet, too, and requires precision manufacturing. Volkswagen has also made it available in a reverse-gear configuration with power electronics. Volkswagen’s ID.3 EV’s e-drive motor is a perfect example of this.
The first part of the transmission corresponds to the even and odd gears, while the second part has the straighter gears. A single gear set can change between both modes. An intermediate gear set is also possible. A lastshelf gear can be formed by hydraulically betigte Lamellenkupplungen. Both types of gears can be exchanged between partial transmissions. The invention may furthermore include a transmission with the same gear ratios as the first part of the transmission.
Another variation of the one speed gearbox is the CVT. This type of gearbox has only one drive unit, which means it does not require a clutch or brake. Its power is derived from the torque generated by the Internal Combustion Engine at a particular speed. The engine cannot sustain such high torque levels above 5500 RPM, which will reduce the MPG. Also, raising the RPM will reduce the acceleration, and in severe cases may lead to an engine crash.
As the number of applications for a 1 speed gearbox increases, its design and functionality will continue to evolve. Bosch Rexroth has developed its eGFZ gearbox based on customer feedback. They are currently working on various pilot projects and hope to put it into production in the next few years. However, if you want to buy a 1 speed gearbox now, consider the benefits of a first-rate design.
editor by czh
in Peshawar Pakistan sales price shop near me near me shop factory supplier Checp Udl Coaxial Stepless Motor Variable Variator Speed Reducer Gearbox manufacturer best Cost Custom Cheap wholesaler
“We are usually serving our buyers with our ideal merchandise.” we are assured to supply our consumers flexible and diversified solutions. Our item assortment involves all varieties of helical gear, spur gear, bevel gear, gear rack, worm gear, sprockets,chains, bearings.
Checp UDL CoaXiHu (West Lake) Dis.al Stepless EPTT Variable Variator Velocity EPTT EPTT
In depth Photos
Application
To increase ratio and adjust velocity, it is linked between worm EPTT and motor.
Item Description
Dimensional Dimensions
EPTT ampEPTT
Firm Introduction
EPT EPTT Organization Restricted is a EPTT-based mostly intercontinental business who is EPTTized in electrical motor, EPTT and controlling method deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ing, manufacturing, top quality managing and buying and selling.
Mission:
We are dedicated to deveXiHu (West Lake) Dis.Hu (West Lake) Dis. an intercontinental electric powered motor business that can provide a single-quit dependable items with buyer-oriEPTTd support.
History:
EPT was estabEPTTd in 2571 by EPTT Cheng in Los Angeles, Usa and moved to HangEPTT, EPTT in 2011. In the previous eight years, the team of EPT continues to EPTT the worth to our esteemed consumers all above the planet by building up wide and trustworthy source EPTT management technique, successful good quality amp shipping time handle system, EPTT effectiveness manufacturing system and fast-respond expert services.
Place:
BinEPTTng district, HangEPTT, EPTT BinEPTTng is a high-tech zone which is the cEPTTr of oversea EPTT talent business people. Some well-known neighbours incEPTT Alibaba, Netease and Geely company.
Track record:
EPT is a subsidiary of EPTTEye Funds Constrained who has three production EPTTs and 1 revenue office with much more than five hundred personnel and total 200 million income.
Certifications
EPTT
FAQ
one Q: What’s your MOQ for Personal computer EPTT?
A: 1unit is okay for sample testing
two Q: What about your guarantee for your EPTT?
A: A single yr.
3 Q: Do you provide OEM service with customer-symbol?
A: Of course, we could do OEM orders, but we mainly target on our personal brand name.
4 Q: How about your payment terms?
A: TT, western union and PayPal. 100% payment EPTT for orders significantly less $five,000. 30% deposit and equilibrium prior to shipping and delivery for orders above $5,000.
five Q: How about your EPTT?
A: Carton, Plywood scenario. If you require more, we can pack all merchandise with pallet
6 Q: What information must be given, if I purchase a EPTT from you?
A: Rated EPTT, EPTT ratio, input speed, mounting position. Much more specifics, better!
seven Q: How do you supply the EPTT?
A: We will evaluate and choose the most suitable waEPTTof supply by sea, air or express courier.
We hope you will enEPTT cooperating with us.
China manufacturer & factory supplier for WPA in Campinas Brazil single speed reducer mechanical speed variator line transmission light duty gearbox small W gear box With high quality best price & service
We loThe philosophy of our business is dependent on 3 basic aspects: The customer: Our aim The high quality: Our reason of getting Services: Our big difference These 3 pillars are the bases of our organization due to the fact they are the masterful strains of our perform.ok ahead to the opportunity to provide you and hope to incorporate you to our increasing family members of pleased buyers. we offer one-cease answer for the buy of mechanical chain,electricity transmission parts and pto shaft, agricultural gearboxes merchandise in China.
Overview
Fast Specifics
We warmly welcome the pals from all the entire world!
- Relevant Industries:
-
Production Plant, Equipment Repair Outlets, Foods & Beverage Manufacturing unit, Farms
- Area of Origin:Zhejiang, China
- Brand Identify:
-
OEM
- Gearing Arrangement:
-
Worm
- Output Torque:
-
one.8-2430N.M
- Input Speed:
-
1400RPM
- Output Velocity:
-
19-186.7RPM
- Coloration:
-
silver, blue, black and so on
- pace ratio:
-
five,ten,fifteen,twenty,thirty,forty,fifty,sixty,
- size:
-
40,fifty,60,70,80,a hundred,120,a hundred thirty five,147,a hundred and fifty five,one hundred seventy five,200,one hundred fifty
- oil:
-
.13,.seventeen,.22,.6,1.5,3.2,3.6,3.7,3.8,4.6,6.5,9
- WPA 040:
-
usd 16.83
- MOQ:
-
1pcs
Packaging & Shipping and delivery
-
Lead Time
: -
A PTO shaft transfers the energy from the tractor to the PTO driven attachment. This enables the tractor to electrical power a range of tractor implements which includes flail mowers, wooden chippers, rotary tillers, excavators, and far more.
Quantity(Packing containers) one – fifty >50 Est. Time(days) 7 To be negotiated
Online Customization
Solution Description
WPA single pace reducer mechanical pace variator line transmission light-weight responsibility gearbox modest helical gear box
Certifications
Trade Exhibits
Packaging & Shipping
Packing Specifics : Standard carton/Pallet/Regular wooden situation
Supply Particulars : 15-thirty doing work days upon payment
Business Info
other series solution
Precision Planetary gearbox | Robot RV gearbox speed reducer |
Custom produced Non-normal Gearbox | UDL Collection Variator |
PYZ Series Helical Tooth Shaft Mounted Reducer | 8000 Sequence Cycloidal Reducer |
SLT Series Spiral Bevel Gearbox | SLSWL Collection Worm Screw Jack |
SLP Sequence Planetary Reducer | SLH/SLB Sequence High Energy Reducer |
NMRV Series Worm Reducer | BKM Collection Helical-hypoid Reducer |
SLRC Series Helical Reducer | SLSMR Sequence Shaft Mounted Reducer |
SLXG Series Shaft Mounted Reducer | X/B Collection Cycloidal Reducer |
SLR/SLF/SLK/SLS Series Helical Reducer |
Relevant Products
Contact